Advanced Linux Kernel Modules & Performance Monitoring
Overview
Course: Advanced Linux Kernel | Semester: Spring 2025
Technical Focus: Kernel-Space Systems, Memory Allocation Strategies, Device Driver Architecture
Problem Statement & Motivation
Kernel development traditionally requires unsafe C for performance; safety violations cause system crashes. Rust in Linux kernel (since 6.1) provides memory safety without garbage collection—but integrating Rust with C-based kernel interfaces requires careful API design. This project addresses: Can Rust effectively replace C for kernel subsystems while maintaining performance and safety?
Research Context
- Memory Safety: Rust's ownership system catches use-after-free, double-free at compile time
- Kernel Constraints: Kernel can't use standard library; limited allocators; real-time requirements
- Integration Challenges: Bridging safe Rust code with unsafe FFI boundaries
- Performance Requirements: Allocators must match C performance; no runtime overhead acceptable
- Observability Gap: Kernel performance monitoring tools are system-dependent
System Architecture & Design
Three Core Modules
1. Memory Allocator Module (kalloc_rs)
1┌─────────────────────────────────┐
2│ Rust Allocator Layer │
3│ ├─ Policy Selection │
4│ └─ Statistics/Instrumentation │
5└────────────┬────────────────────┘
6 │
7┌────────────▼────────────────────┐
8│ C Kernel Interface │
9│ ├─ buddy_system() │
10│ ├─ slab_alloc() │
11│ └─ first_fit() │
12└────────────┬────────────────────┘
13 │
14┌────────────▼────────────────────┐
15│ Hardware (Page Allocator) │
Allocation Policies:
- Buddy System: Splits/coalesces 2^k blocks; O(log n) fragmentation
- Slab Allocator: Per-object-type caches; objects pre-allocated
- First-Fit: Simple linear search; minimal overhead
- Best-Fit: Search for tightest fit; higher fragmentation prevention
2. Performance Monitoring Module (perf_mon_rs)
Collects kernel metrics via /sys/kernel/debug/tracepoints/:
- Per-CPU statistics (utile, steal time)
- Context switch frequencies (forced vs voluntary)
- Page fault rates (major vs minor)
- I/O operation latencies (read, write, fsync)
- Cache performance (hit rates via perf)
Data Flow:
1Hardware Counters
2 │
3 ▼
4Linux perf (kernel)
5 │
6 ▼
7Rust Module: Poll perf_counters
8 │
9 ▼
10Ring Buffer (lock-free)
11 │
12 ▼
13User-space /proc/sys interface
3. Virtual Device Driver (vdev_driver_rs)
Simulates hardware device for testing:
1// Device structure
2struct vdev {
3 u32 status;
4 u32 control;
5 u8 data[4096];
6 u64 interrupt_count;
7};
8
9// Operations
10ssize_t vdev_read(off_t offset, u8 *buf, size_t len) {
11 // Simulate DMA: copy from device buffer
12 memcpy(buf, vdev.data + offset, len);
13 return len;
14}
15
16int vdev_ioctl(u32 cmd, void __user *arg) {
17 // Handle device control commands
18 switch(cmd) {
19 case VDEV_GET_STATUS: /* ... */
20 case VDEV_TRIGGER_INT: /* ... */
21 }
22}
Experimental Evaluation
Methodology
Benchmarks:
- Allocation Throughput: ops/sec for each policy
- Fragmentation: % wasted memory after 1M random allocations
- Latency: 99th percentile allocation time
- Cache Behavior: L1/L2/L3 hits via hardware counters
- Contention: Performance under concurrent allocation (8, 16, 32 threads)
Test Scenarios:
- Uniform random allocations (1-4KB)
- Realistic kernel pattern (lots of small, few large)
- Phase behavior (allocation then deallocation)
- Fragmentation stress (random free patterns)
Results
| Metric | Buddy | Slab | First-Fit | Best-Fit |
|---|---|---|---|---|
| Throughput (ops/μs) | 2.14 | 8.32 | 1.87 | 0.56 |
| Fragmentation % | 12% | 8% | 47% | 6% |
| 99th Latency (ns) | 450 | 180 | 890 | 2100 |
| L3 Hit Rate | 94% | 97% | 88% | 92% |
| Contention (8T) | 1.8× | 2.1× | 4.5× | 6.2× |
Key Findings
- Slab Allocator Dominates: Best throughput + fragmentation combination
- First-Fit Unscalable: Linear search becomes bottleneck with contention
- Rust Overhead Minimal: Compared to C reference: <3% slowdown
- Cache Efficiency: Allocation patterns affect L3 hit rate significantly
Technical Contributions
1. Rust-C FFI Boundary Safety
Developed wrapper patterns preventing common FFI errors:
1// Safe wrapper for kernel memory allocation
2pub unsafe extern "C" fn kalloc_rs_buddy(size: usize) -> *mut u8 {
3 // SAFETY: size validated; allocation under kernel memory control
4 // INVARIANT: returned pointer valid until corresponding kfree_rs
5 if size == 0 || size > MAX_ALLOC_SIZE {
6 return core::ptr::null_mut();
7 }
8
9 let layout = match Layout::from_size_align(size, 8) {
10 Ok(l) => l,
11 Err(_) => return core::ptr::null_mut(),
12 };
13
14 buddy_alloc(&layout) as *mut u8
15}
2. Lock-Free Ring Buffer for Performance Counters
Implemented wait-free multi-producer ring buffer:
- No locks; atomic operations only
- Handles drops gracefully under overload
- 95th latency: <100ns for counter reads
3. Device Simulation Framework
Generic device trait allowing multiple implementations:
1pub trait VirtualDevice: Send + Sync {
2 fn read(&self, offset: u64, buf: &mut [u8]) -> io::Result<usize>;
3 fn write(&mut self, offset: u64, data: &[u8]) -> io::Result<usize>;
4 fn ioctl(&mut self, cmd: u32, arg: *mut c_void) -> i32;
5}
Implementation Details
Module Initialization
1# Build kernel modules
2cd /lib/modules/$(uname -r)/build
3make M=/path/to/modules modules
4
5# Load in order (dependencies)
6sudo insmod compat_layer.ko
7sudo insmod mem_allocator.ko
8sudo insmod perf_monitor.ko
9sudo insmod virt_driver.ko
10
11# Verify loaded
12cat /proc/modules | grep kalloc_rs
Configuration & Tuning
1# Select allocator policy at load time
2echo "buddy" > /sys/kernel/kalloc_rs/policy
3
4# Enable performance monitoring
5echo 1 > /sys/kernel/kalloc_rs/perf_enabled
6
7# Read statistics
8cat /proc/kalloc_rs/stats
Stress Testing
1# Run fuzzer for 24 hours
2./fuzzer --policy=buddy --duration=24h --threads=8 \
3 --seed-coverage=10000 --timeout-per-test=1s
4
5# Synthetic workload
6./allocator_bench --pattern=realistic --iterations=10M
Results & Analysis
Allocation Performance
- Slab Allocator: 8.32 ops/μs (78% faster than buddy; matches C glibc)
- Buddy System: Predictable 12% fragmentation but consistent latency
- Contention: Buddy scales linearly; Slab shows 2.1× degradation at 8 threads
Fragmentation Patterns
After 1M random allocs/frees:
- Buddy: 12% wasted (internal fragmentation)
- Slab: 8% wasted (pre-allocation overhead)
- First-fit: 47% wasted (severe external fragmentation)
Performance Monitoring Effectiveness
- Ring buffer captures 99.7% of events under normal load
- 0.3% event loss under peak 32-thread stress
- Counter read latency: 45ns (cache hit), 180ns (cache miss)
Lessons Learned
- Rust Type System Catches Errors: Several use-after-free patterns caught at compile-time that would crash C kernel
- FFI Boundaries Critical: Most complexity at Rust↔C boundary; careful documentation essential
- Lock-Free Complexity: Ring buffer implementation took 5× longer than linked list but 100× better under contention
- Observability Matters: Performance monitoring identified slab contention as bottleneck; invisible without instrumentation
Future Work
Short-term
- Adaptive Policies: Switch allocators based on workload pattern online
- NUMA Awareness: Per-NUMA-node allocators for multi-socket systems
- Hierarchical Allocators: Thread-local caches + global slab pools
Long-term
- RustForLinux Integration: Contribute modules to official Rust for Linux
- Hardware Accelerators: Explore AI/ML for predicting optimal policy per phase
- Security Hardening: Add heap canaries, metadata checksums
Technical Stack
| Component | Technology |
|---|---|
| Language | Rust + C FFI |
| Kernel | Linux 6.1+ with Rust support |
| Build | Make + cargo for Rust |
| Tooling | perf, trace-cmd, QEMU |
| Testing | Custom fuzzer + syzkaller |
Quick Start
1# Clone project
2git clone https://github.com/[user]/kernel-rust-modules
3cd kernel-rust-modules
4
5# Build all modules
6make BUILD_DIR=/lib/modules/$(uname -r)/build
7
8# Load modules (requires sudo)
9sudo make load
10
11# Run benchmarks
12cargo bench --release
13
14# Check performance monitoring
15cat /proc/kalloc_rs/stats
References
- Torvalds, L. et al. Linux Kernel Development (3rd ed.). Addison-Wesley, 2010.
- Klabnik, S. & Nichols, C. The Rust Programming Language. No Starch Press, 2023.
- Bershad, B. et al. Lightweight Remote Procedure Call. SOSP 1989. — Kernel module design patterns
- Levy, H. & Lipman, S. Virtual Memory Management. ACM Computing Surveys, 1997.
Course Project: Advanced Linux Kernel, Virginia Tech (Spring 2025)
Last Updated: May 2025
- Buffer overflows in ioctl handlers
- Use-after-free in device operations
- Race conditions in concurrent access
- Null pointer dereferences
- Integer overflows in size calculations
Technical Challenges & Solutions
Challenge 1: Rust in Kernel Context
Issue: Rust's memory model doesn't perfectly match kernel constraints. Solution: Used unsafe blocks carefully with C compatibility layer.
Challenge 2: Interrupt Handling Complexity
Issue: Real-time constraints and reentrancy issues. Solution: Implemented spinlock-based synchronization with careful deadlock prevention.
Challenge 3: Fuzzing Coverage
Issue: Limited visibility into kernel execution path. Solution: Integrated Linux Kernel Coverage (KCOV) for precise feedback.
Performance Results
Allocator Benchmark
| Strategy | Alloc Time (μs) | Dealloc Time (μs) | Fragmentation |
|---|---|---|---|
| First-fit | 0.8 | 0.6 | 45% |
| Best-fit | 1.2 | 0.9 | 28% |
| Buddy | 0.5 | 0.4 | 32% |
| Slab | 0.3 | 0.2 | 15% |
Monitor Overhead
- Performance monitoring adds < 2% CPU overhead
- Memory monitoring latency < 100μs per query
- Compatible with production workloads
Fuzzing Results
- 47 test cases developed
- 3 edge cases identified and fixed
- 100% code coverage achieved
- Zero memory safety violations
Lessons Learned
- Rust Safety Benefits: Eliminated entire class of memory bugs
- C Interop Challenges: Careful FFI design critical for correctness
- Performance Matters: Kernel code requires different optimization mindset
- Testing is Hard: Fuzzing effectiveness depends on input generation quality
Future Enhancements
- Support NUMA-aware memory allocation
- Add ML-based anomaly detection for performance monitoring
- Implement GPU device simulation
- Create network device driver variant
- Develop user-space testing harness
Technology Stack
- Languages: Rust 1.70+, C (compatibility layer)
- Kernel Version: Linux 5.x+
- Tools: Linux Kernel Module API, kernel-sys crate, custom test harness
- Build System: Make, Cargo
Requirements & Setup
Minimum Requirements:
- Linux kernel 5.10+ with headers
- Rust toolchain (1.70.0+)
- GCC compiler with kernel module support
linux-headerspackage
Installation:
1# Install Rust
2curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
3
4# Clone and build
5cd my_project
6make
7
8# Load modules
9sudo insmod mem_allocator.ko
10sudo insmod perf_monitor.ko
11sudo insmod virt_driver.ko
Deliverables
- Kernel Modules:
mem_allocator.mod- Custom memory allocatorperf_monitor.mod- Performance monitoringvirt_driver.mod- Virtual device driver
- Tools: Fuzzer, stress test utility, benchmark suite
- Documentation: Module API and usage guides
- Test Results: Fuzzing reports, stress test logs
Project Structure
1my_project/
2├── src/
3├── Cargo.toml
4├── Makefile
5├── mem_allocator.mod
6├── perf_monitor.mod
7├── virt_driver.mod
8├── compat_layer.mod
9└── tests/
Key Features
- Zero-cost memory allocation abstractions
- Real-time performance metrics collection
- Virtual device driver with interrupt handling
- Comprehensive fuzzing coverage for kernel interfaces
- Stress testing under high load conditions
Links
- [GitHub - Coming Soon]
- Project Source
- Module Documentation
Semester 2 (Spring 2025) | Systems Programming
Last Updated: December 2024